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Nucleon form factors at low q
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Abstract. We discuss recent studies of the proton and neutron form factors at low momentum transfer.
The rms-radii and Zemach moment, respectively, are determined from the world data set.

PACS. 2 1.10.Ft – 13.40.Gp – 25.30.bf

Introduction

The root-mean-square (rms) radii of the proton and neu-
tron are quantities of great interest for an understanding
of the nucleon; they describe the most important integral
properties concerning the size. Accurate knowledge of the
rms-radii of the charge- and magnetization distributions
are needed for the interpretation of high-precision mea-
surements of transitions in hydrogen atoms, studied in
connection with measurements of fundamental constants.
These measurements recently have made great progress;
the 2p-1s (HFS) splittings are known to 14 (12) signifi-
cant digits. The interpretation of these quantities is now
entirely limited by the accuracy with which the proton
radii are known.

The proton rms-radii in the past in general have been
determined from elastic electron-proton scattering. The
usual approach has been to employ the most accurate
cross sections at low momentum transfer q, and to per-
form an experimental separation of longitudinal (L, elec-
tric) and transverse (T, magnetic) form factors Gep and
Gmp. The resulting charge or magnetic data as a function
of q2 are then fit with an appropriate function to get the
rms-radius , i.e. the q2 = 0 slope of the form factor.

For the neutron, things are more complicated as first
the contribution of the proton to electron-deuteron scat-
tering has to be removed, hereby increasing the uncer-
tainty. The subtraction of the proton contribution also
amplifies greatly the effect of poorly controlled corrections
such as FSI or MEC.

In the area of both the proton and the neutron radii,
significant progress has been made recently, either by bet-
ter analysis of existing data and/or new data. This pro-
gress is discussed in this paper.

Proton charge radius

The up to recently most accurate radius came for data
mainly taken at Mainz [1]-[2]. After an L/T-separation via
Rosenbluth plots, the data were fitted with a polynomial

expansion of the form factor

G(q) = 1 − q2〈r2〉/6 + q4〈r4〉/120 − ...

The result: re
rms = 0.862 ± 0.012 fm. Fits based on dis-

persion relations and the Vector Dominance Model VDM
[3,4] gave a lower radius, 0.847 ± 0.009fm. The average,
0.854±0.012 fm is quoted as the ”best” value in CODATA
[5]. When considering the systematic errors of the data,
the error bar quoted is certainly significantly underesti-
mated. Also, Coulomb distortion has not been included
when fitting the cross sections.

A closer look at the ”modelindependent” expansion of
Gep given above shows that this expansion has a severe
drawback: once, at very low q, the q4〈r4〉-term is small
enough to not affect the result, also the q2〈r2〉/6-term
is small, and difficult to determine from the experimen-
tal form factors which are proportional to 1−q2〈r2〉/6+...
and subject to normalization errors. When including data
at not-so-low q, which are also sensitive to the higher mo-
ments, one finds that, for exponential-type charge distri-
butions (which apply to the proton), they give a large
contribution to G(q); the higher moments 〈r4〉= 2.5 〈r2〉2,
〈r6〉 =11.6 〈r2〉3 grow rapidly with order. As a conse-
quence, there is no region of q where the lower mo-
ments can be determined without undue interference of
the higher ones. Inclusion of the higher moments is lim-
ited by the convergence radius of the above expansion,
which is only ∼ 1.4fm−1.

Continued Fraction (CF) expansions

G(q) =
1

1 +
q2b1

1 +
q2b2

1 + · · ·
are a special case of Padé approximants and have been in-
troduced to find a function f(z) specified by its moments
〈zn〉 and to accelerate the convergence of poorly converg-
ing series [6]. The convergence radius of this expansion
is much larger, and, for exponential-type densities, the
b1, b2 coefficients (b1 yielding the rms-radius) are nicely
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Fig. 1. The figure shows the ratio of experimental and fit e-p
cross sections for the CF parameterization. Note the greatly
expanded vertical scale

decoupled [7]. Tests of CF-expansion with pseudo data
for Gep(q) and Gmp(q), generated using known rms-radii,
show that the arbitrariness in the choice of the number
N of terms bn (N=2 .. 5) used and the selection of a spe-
cific maximum momentum transfer for the data included,
qmax = 1 .. 5fm−1, leads to a scatter of the fitted rms-
radii of ±0.010fm, this scatter covering both model and
statistical error.

In order to determine the proton rms-radius we have
used the world cross sections for q < 4fm−1. When pa-
rameterizing both Gep(q) and Gmp(q) with the CF ex-
pansion and fitting Gep and Gmp simultaneously to the
cross sections, the L/T-separation is automatically per-
formed, with a quality that is superior to the usual L/T-
separation at individual values of q. The Coulomb correc-
tions (usually omitted, but with significant effect) have
been included according to [8,9].

The quality of the fits is quite good. We show in Fig. 1
the ratio of experimental cross sections and fit for the CF
parameterization and 5 CF coefficients. When including
the systematic uncertainty of the data – done by changing
each data set by the quoted error, refitting and adding
quadratically all the resulting changes – the result for the
charge radius of the proton is re

rms = 0.895±0.018fm [10].
This radius is significantly larger than the values generally
cited in the literature.

This larger value of the rms-radius now leads to agree-
ment between calculated and experimental Lamb shift.
The increase relative to earlier radii is understood as a
consequence of now treating properly the higher moments
〈rn〉.

A further improvement of the accuracy could be hoped
to result from a µ-X-ray experiment performed at PSI [11];
at present, it is not clear, however, if the experiment was
successful.

Proton magnetic radius and Zemach moment

In order to predict atomic hyperfine splittings HFS, an
accurate knowledge on the magnetic structure is needed;
the magnetic radius obviously also results from the above-

described analysis of the e-p cross sections. More interest-
ing, though, is the Zemach moment [12]: The bulk of the
electron-nucleus magnetic interaction is short ranged and
confined to the vicinity of the nucleus. This is also the
only region of the electron’s wave function that is signifi-
cantly affected by the nuclear charge distribution, and the
leading-order size effect on HFS was shown by Zemach[12]
to depend on a convolution of charge- and magnetization
densities

∆EZemach = −2 Z α m 〈r〉(2) EF

〈r〉(2) =
∫

d3r r

∫
d3r′ρe(|r − r′|)ρm(r′)

= − 4
π

∫ ∞

0

dq

q2 (Gep(q2)Gmp(q2) − 1)

where EF is the Fermi hyperfine splitting, m is the elec-
tron mass, Z is the nuclear charge, α is the fine-structure
constant.

One finds [13] that the Zemach moment depends on
the detailed q-dependence of both Gep(q) and Gmp(q); the
usage of e.g. the dipole parameterization for both form fac-
tors, as has been assumed previously, does not lead to the
correct answer. An advantage of the Zemach moment: it
is sensitive to a higher q-range than needed for the deter-
mination of the rms-radii. As a consequence, the Zemach
moment can be determined significantly more accurately
than the rms-radius radius, 〈r〉(2) = 1.086 ± 0.012fm,
where the error bar includes statistics and all systemat-
ics. The smaller uncertainly results both from the anti-
correlation of errors in Gep and Gmp and the fact that
at the larger q’s the finite size effect is less sensitive to
normalization errors of the data. Within 2σ the resulting
HFS splitting calculated from the above Zemach moment
agrees with experiment, the main uncertainty now coming
from the difficult to calculate proton polarizability.

Neutron charge radius

In terms of the data base, little has changed on the neutron
charge radius over the last years; the main effort has gone
into measuring Gen at the larger values of q exploiting
spin observables and (e,e’n) coincidence techniques. Two
controversial points concerning the q2 ∼ 0 regime seem to
have been clarified, though:

1. It for some time has been disputed whether the slope
dGen/dq2 at q2 = 0 reflects the genuine charge radius,
or rather is mainly due to the ’Zitterbewegung’ and the
neutron anomalous magnetic moment, the Darwin-Foldy
term. This question is very relevant for an understand-
ing of the neutron, as the two interpretations lead to a
negative or very small positive rms-radius squared, re-
spectively. This question now is largely settled in favor
of the former interpretation [14,15], as the Darwin-Foldy
term is compensated by a relativistic correction to the
F1(q) form factor. The neutron thus does have the struc-
ture expected from several models, a positive interior and
a negative large-r tail.

2. The experimental slopes of the Dubna and Garch-
ing groups [16,17], measured via thermal neutron-heavy
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Fig. 2. The figure shows the ratio of experimental and dipole
neutron magnetic form factor and the CF fit. The data are from
d(e,e’n)/d(e,e’p) (��), 3He(e,e’) (•,[18]) and d(e,e’) (+,[19]).
Note the greatly expanded vertical scale

atom scattering, differed by several σ; it is now under-
stood that the use of the experimental neutron polariz-
ability favors the Munich value, amounting to 〈r2〉n =
−0.113 ± 0.003fm2.

Neutron magnetic radius

While the proton form factors are known with excellent
precision, data for the neutron have been of much poorer
quality due to the lack of a free neutron target. This is
true for both the electric form factor and, to a somewhat
lesser extent, for the magnetic one.

In the past, Gmn has been determined mostly from
quasi-elastic D(e, e′) cross sections. The extraction of Gmn

requires an L/T separation and a subtraction of the (dom-
inant) proton magnetic contribution. The uncertainties re-
sulting from the deuteron wave function, meson exchange
currents (MEC), and final state interactions (FSI) are
greatly amplified by the two subsequent subtractions and
limited the accuracy of Gmn to ∼20%. Several new meth-
ods have been used recently.

The best method to minimize the sensitivity to poorly
controlled quantities is a determination of Gmn from the
ratio R = σ(e, e′n)/σ(e, e′p) on the deuteron in quasi-
free kinematics [20,21,22]. The ratio is insensitive to the
deuteron wave function and corrections due to FSI and
MEC are calculable and small. The detection of the neu-
tron ensures small contributions from e-p scattering, the
remaining ones due to charge-exchange scattering can be
removed easily via calculation. The price to pay is the
need for a precise measurement of the absolute efficiency
η of the neutron detector employed. A measurement of η
and a detailed study of the detector response η(x, y, En)
as a function of the location of the impact of the neutron
on the detector and neutron energy, however, is feasible
when using the high-intensity tagged neutron beams one
can produce at the proton-beam facilities [20,22].

The data that determine the neutron magnetic form
factors with small (and well controlled) theoretical correc-
tions are shown in Fig. 2. (We do not include the D(e,e’n)

Table 1. Electric and magnetic rms-radii of nucleons; 1 de-
notes that the Zemach moment is quoted, 2 refers to r2

rms

particle re
rms rm

rms

proton 0.895±0.018 fm 1.086±0.012 fm1

neutron –0.113±0.003 fm2 0.873±0.015 fm

data obtained using efficiencies determined with tagging-
reactions with a tree-body final state i.e. D(e, p)e′n and
H(e, π)e′n [23,24], as, with only one charged particle de-
tected, such reactions do not allow to properly tag the
neutron [25]). A CF fit of that data [26] yields a mag-
netic rms radius for the neutron rm

rms = 0.873±0.015fm,
with statistical and systematic errors included. This value
reaches a precision that is comparable to (and even slightly
better than) the one achieved for the proton charge radius.

A summary of the most accurate radii for the proton
and neutron is given in Table 1.
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